32 research outputs found

    Effect of particle size on the surface properties and morphology of ground flax

    Get PDF
    Flax fibers were ground with a ball-mill and four fractions with different size ranges were collected by sieving. These were tested for water sorption, degree of polymerization (DP), copper number, hydroxyl number and analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and inverse gas chromatography (IGC). Significant differences were found between the properties of the flax fiber and those of the ground versions, including fragmentation of fibers, increase of water sorption, copper number, hydroxyl number and surface O/C ratio, and decrease of DP, crystallite size and dispersive component of surface energy (gammasd). Some parameters depended on the particle size: O/C ratio and hydroxyl number had local maxima at 315-630 μm, while gammasd increased steadily with the decrease of particle size. These relationships were explained by fiber disintegration, destruction of waxy surface layer, exposure of cellulosic components, increase of surface area and crystalline imperfections

    Deposition of Silicon Carbide and Nitride Based Coatings by Atmospheric Plasma Spraying

    Get PDF
    In this work atmospheric plasma spraying of SiC and Si3N4 was investigated. Plasma spraying of these ceramics raises several problems since they would tend to decompose instead of melting at elevated temperatures during the process. To circumvent this problem the non-oxide ceramics were deposited as a composite powder mixed with non-oxide ceramic particles resulting in a ceramic/ceramic composite structure. Our findings were that using such a composite feedstock powder both oxidation and decomposition of the non-oxide particles could be avoided. A vitrified phase was also developed in the coating

    The supramolecular chemistry of gold and l-cysteine: Formation of photoluminescent, orange-emitting assemblies with multilayer structure

    Get PDF
    The protein mediated approach is a common method for the synthesis of photoluminescent gold quantum clusters (GQCs), where proteins, acting as reducing and stabilizing agents, react with gold salts through cysteine residues. For the better understanding of the phenomenon, the aqueous phase reaction of HAuCl_4 and L-cysteine has been investigated at the supramolecular level by various experimental techniques and molecular mechanics simulations. We have observed the formation of a novel photoluminescent product, (AuCys)_n^β, which shows emission in the orange region of the spectrum. Small- and wide-angle X-ray scattering (SWAXS) measurements have revealed the presence of nanosized lamellae, which have an internal multilayer superlattice structure with a characteristic periodic distance of 1.3 nm. Based on the results, the layers are built up by zigzag shaped (AuCys)_n polymer chains connected through aurophilic bonds. The aurophilic network is stabilized via salt bridges and hydrogen bonds, which are also responsible for the interlayer interactions. Here, the evolution of the multilayer structure has been monitored by the combined application of photoluminescence spectroscopy and time-resolved SAXS. It has been concluded that there is a strong correlation between the emission and the scattering intensity, which suggests that the two- and three-dimensional aggregation of the building blocks to form sheets and multilayers are simultaneous processes. Furthermore, we have revealed that the formation and behavior of (AuCys)_n^β show significant differences to that of Au-L-glutathione compounds desrcibed earlier despite the similarity of L-cysteine and L-glutathione. These results evidence that L-cysteine and gold species form building blocks that can be applied expansively in supramolecular and cluster chemistry

    Development of flame-retarded nanocomposites from recycled PET bottles for the electronics industry

    Get PDF
    Recycled polyethylene-terephthalate (rPET) nanocomposites of reduced flammability were prepared by combining aluminum-alkylphosphinate (AlPi) flame retardant (FR) and natural montmorillonite (MMT), in order to demonstrate that durable, technical products can be produced from recycled materials. During the development of the material, by varying the FR content, the ratio and the type of MMTs, rheological, morphological, mechanical and flammability properties of the nanocomposites were comprehensively investigated. Related to the differences between the dispersion and nucleation effect of MMT and organo-modified MMT (oMMT) in rPET matrix, analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and Differential Scanning Calorimetry (DSC), mechanical properties of the nanocomposites changed differently. The flexural strength and modulus were increased more significantly by adding untreated MMT than by the oMMT, however the impact strength was decreased by both types of nanofillers. The use of different type of MMTs resulted in contradictory flammability test result; time-to-ignition (TTI) during cone calorimeter tests decreased when oMMT was added to the rPET, however MMT addition resulted in an increase of the TTI also when combined with 4% FR. The limiting oxygen index (LOI) of the oMMT containing composites decreased independently from the FR content, however, the MMT increased it noticeably. V0 classification according to the UL-94 standard was achieved with as low as 4% FR and 1% MMT content. The applicability of the upgraded recycled material was proved by a pilot experiment, where large-scale electronic parts were produced by injection molding and characterized with respect to the commercially available counterparts

    Structure and magnetism of Fe–Co alloy nanoparticles

    Get PDF
    We report the hydrothermal synthesis and structure of FexCo1−x alloy nanoparticles with considerable stability against oxidation under ambient atmosphere. Powder X-ray diffractometry (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma mass spectrometry (ICP-MS), 57Fe Mössbauer spectroscopy and magnetization measurements are applied to characterize the composition, morphology, crystal structure, atomic order and magnetic properties of the nanoparticles. As-prepared samples are composed mainly of the bcc FexCo1−x alloy phase. TEM images of heat-treated samples confirm the nanoparticle nature of the original alloys. A consistent analysis of the experimental results leads to x ≈ 53% and x ≈ 62% Fe atomic ratio respectively in two analogous alloy samples, and suggests that the atomic level structure of the nanoparticles corresponds to that of a fully disordered (A2-type) alloy phase. Exploration of the effect of cobalt on the 57Fe hyperfine parameters of iron microenvironments suggests that in these alloys the electronic state of Fe atoms is perturbed equally and in an additive manner by atoms in their first two coordination spheres

    Evidence of quasi-intramolecular redox reactions during thermal decomposition of ammonium hydroxodisulfitoferriate(III), (NH4)(2)[Fe(OH)(SO3)(2)]center dot H2O

    Get PDF
    Synthesis of ammonium hydroxodisulfitoferriate(III), (diammonium catena-{bis(mu (2)-sulfito-kappa O,kappa O)-mu (2)-hydroxo-kappa O-2}ferrate(III) monohydrate) (NH4)(2)[Fe(OH)(SO3)(2)]center dot H2O (compound 1) and its thermal behavior is reported. The compound is stable in air. Its thermal decomposition proceeds without the expected quasi-intramolecular oxidation of sulfite ion with ferric ions. The disproportionation reaction of the ammonium sulfite, formed from the evolved NH3, SO2 and H2O in the main decomposition stage of 1, results in the formation of ammonium sulfate and ammonium sulfide. The ammonium sulfide is unstable at the decomposition temperature of 1 (150 A degrees C) and transforms into NH3 and H2S which immediately forms elementary sulfur by reaction with SO2. The formation and decomposition of other intermediate compounds like (NH4)(2)SnOx (n = 2, x = 3 and n = 3, x = 6) results in the same decomposition products (S, SO2 and NH3). Two basic iron sulfates, formed in different ratios during synthesizing experiments performed under N-2 or in the presence of air, have been detected as solid intermediates which contain ammonium ions. The final decomposition product was proved to be alpha-Fe2O3 (mineral name hematite)

    Carbon Microsphere-Supported Metallic Nickel Nanoparticles as Novel Heterogeneous Catalysts and Their Application for the Reduction of Nitrophenol

    No full text
    Nickel nanoparticles are gaining increasing attention in catalysis due to their versatile catalytic action. A novel, low-cost and facile method was developed in this work to synthesize carbon microsphere-supported metallic nickel nanoparticles (Ni-NP/C) for heterogeneous catalysis. The synthesis was based on carbonizing a polystyrene-based cation exchange resin loaded with nickel ions at temperatures between 500 and 1000 °C. The decomposition of the nickel-organic framework resulted in both Ni-NP and carbon microsphere formation. The phase composition, morphology and surface area of these Ni-NP/C microspheres were characterized by powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy and BET analysis. Elemental nickel was found to be the only metal containing phase; fcc-Ni coexisted with hcp-Ni at carbonization temperatures between 500 and 700 °C, and fcc-Ni was the only metallic phase at 800–1000 °C. Graphitization and carbon nanotube formation were observed at high temperatures. The catalytic activity of Ni-NP/C was tested in the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride, and Ni-NP/C was proved to be an efficient catalyst in this reaction. The relatively easy and scalable synthetic method, as well as the easy separation and catalytic activity of Ni-NP/C, provide a viable alternative to existing nickel nanocatalysts in future applications
    corecore